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➢ What do we mean by discrimination?

➢ What do we mean by “fair”?

➢ A causal inference perspective

➢ A Case Study from Wisconsin, USA

➢ A microsimulation 

➢ Summary and References
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Outline



Discrimination

➢ Risk classification vs discrimination

• discriminatory = protected/sensitive/unfair

➢ Potential rating factors 

• X denotes non-discriminatory covariates

• D denotes discriminatory covariates

• Y denotes the loss random variable

• ෠𝑌 denotes a pure premium estimate
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➢ Direct discrimination

• when D is used as a rating factor

➢ Indirect discrimination

• X variables are correlated with D 

• or pricing has a disparate impact on 



1.   D is not the real issue

• e.g. race & immigrant mortality

2. Social solidarity

• e.g. EU gender neutral pricing laws

3. Mitigate systemic inequality

• e.g. anti-redlining initiatives

4. Differential inaccuracy

• e.g. lack of credible data
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If D and Y are correlated, why not discriminate?



FAIRNESS
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➢ T and J have identical careers – employers, salaries 

etc

➢ T and J both retire at 65 with a DC pension fund of 

$1 million.

➢ T and J both use the fund to purchase a pension

➢ Tom gets 6,500 per month for life

➢ Jane gets 5,000 per month for life

➢ Is that fair?
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What is fair?



➢ Are some groups excluded from coverage?

➢ Are some groups subsidized by others?

➢ How granular is the premium rating process?

➢ Insurance as economic commodity vs social good

➢ See Frees and 



➢ Fairness through unawareness

➢ Counterfactual fairness

➢ The premium would be the same if D were 

different

➢ Discrimination-free premium (Lindholm et al, 2022)
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Fair Premium  Criteria
(Xin & Huang, 2023)
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➢ Demographic Parity

➢ Conditional Demographic Parity

 

 

➢ Weak Demographic Parity
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Fair Premium Criteria
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CAUSAL INFERENCE 

PERSPECTIVE
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Insurance DAG example



D

Y

X2

➢ D = a and X2 < 500       

 low risk aversion      

 higher premium

➢ D = b and X2 





➢ Counterfactual Fairness

➢ Requires

➢ If X2 



➢ Discrimination-Free Premium (DFP)

➢ If X2 < 500 

➢ DFP overcharges for D = b 

➢ and undercharges for D = a 

➢ If X=(x1, x3) then D is irrelevant and DFP  UP 

➢ DFP is useful when D is a confounder
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Fair premiums & causal model
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➢ If D is not a confounder? eg 

➢ In principle, the Unaware premium (UP) = DF 

premium (DFP)

➢ But (eg) measurement error can create spurious 

correlations → UP  DFP
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Notes

D

X Y

D
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1. The DAG helps identify risk factors (causal) from other 

rating factors.

2. The DAG helps achieve counterfactual fairness.

3. DAGs are subjective.

4. Variable aggregation, discretization, use of proxies, will 

impact the reliability of causal inference. 

5. Problems with high dimensions

6. Availability of Discriminatory covariate

7. Impact of telemetrics; interpretation; algorithmic 

fairness
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Notes from the causal perspective





CASE STUDY: 

WISCONSIN AUTO INSURANCE
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Redlining in 

Milwaukee, 

1964

link to Auto insurance premiums Milwaukee Redlining in 

Milwaukee,...
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Racial distribution 

Milwaukee, 2010

 

Each dot is 25 people: 

ຑ White 



Questions

➢ Are there ongoing effects of the redlining era on 

auto insurance premiums?

➢ Could actuarial models, assumptions and policy 

design be perpetuating systemic discrimination?

➢ Should insurers and regulators take historic 

inequality into consideration?
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Population density Wisconsin 
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Minority population Wisconsin 
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Maybe Milwaukee is an outlier?

➢ We examined an extensive database on accidents 

attended by police, 2001-2020.

➢

.
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Link



Notes

➢ Premiums are ~ 50%-100% higher in the 

predominantly Black/Hispanic neighbourhoods.

➢ Population density does not appear to 



A MICROSIMULATION 

STUDY
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Microsimulation Experiment

➢ Simulate a portfolio of policyholders

➢ Calibrated to Wisconsin 2020 population data.

➢ Calibrated to Wisconsin premiums

➢ Calibrated to Dept of Transport data on accident 

frequency and severity
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Simulated Variables

➢ Age, gender, marital status, education, driving 

record, car, mileage, zip code

➢ Income

➢ Risk aversion, driving ability, driving type

➢ Race

➢ Insurance frequency / severity

Rating 

Factors

Proxied Rating Factor

Latent 

variables

Discriminatory covariate 

Response Variables
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Microsimulation DAG
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Simulation results - summary

White Black Asian Hispanic Total

Policyholders 83% 6% 3% 7% 100%

- urban 24% 86% 53% 63% 31%

-  rural 48% 5% 12% 19% 42%

Claim freq. 0.187 0.200 0.189 0.190 0.188

Ave severity 6,536 5,282 6,207 5,803 6,388

Ave pure 

premium
1,227 1,058 1,158 1,115 1,206
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Link



What does the insurer see?
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Insurer’s analysis of frequency data
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Insurer’s analysis of severity data

➢ Model 1: Independent of all covariates

➢ Model 2: Dependent on car make/model/year

➢ Model 3: GLM, area income proxy for zip code, all 

other rating factors

➢



Model 3: 

income → 

zip code proxy
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Discrimination metrics

Relative bias tests:

• Relative bias for Model j:

• where is the Model j estimated average pure 

premium for group d D

• and (d) is the true average pure premium for 
group d D
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Why use relative bias?�¾We know the exa q
premium.�¾We are testing for disparate
impa q
of model assumptions�‡spe ifically, leading to larger
values of �I



Discrimination metrics

1. Frequency or severity parameters ⊥ race? 

2. Relative bias ratio:

3. Pairwise comparison of relative bias

• 14 mostly minority ZC vs 48 mostly White

( White)
0.8

(  Black/Asian/Hispanic)

d

d
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Proxy discrimination sample
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Discrimination Results

Direct Indirect

(1)

Indirect 

(2)

Indirect

 (3)

Frequency No No No Yes

Model 1 No   Yes Yes Yes

Model 2 No Yes Yes Yes

Model 3 No No No Yes

Model 4 No No No No
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➢ Would demographic parity be appropriate here?

➢ Would the Discrimination-Free Premium be 

appropriate here?

➢ How might counterfactual fairness be taken into 

consideration?

➢ Causal inference requires subjective judgement – 

might this introduce more bias?
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Other issues



Summary

➢ The causal framework can illuminate sources of 

unfairness.

➢ Discrimination can arise from a common actuarial model 

of frequency/severity.

➢ Our results are consistent with empirical evidence in 

terms of premiums and insurance losses.

➢ Using causal rating factors can mitigate discrimination.

➢ Rating systems (underwriting, NCB, rating factors) can 

exacerbate unfairness
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