MATHEMATICS ENRICHMENT CLUB. Problem Sheet 12 Solutions, August 27, 2019

- 2. Since we are adding consecutive integers, we know that $a_2 = a_1 + 1$; $a_3 = a_1 + 2$; $a_{100} = a_1 + 99$. Therefore, we can write

$$\begin{array}{c} \mathcal{P}_{a_{2}+a_{3}+\ldots+a_{99}} \\ = \mathcal{P}_{\overline{98a_{1}+4851}} \\ \mathcal{P}_{\overline{98a_{1}+4851}} \\ \mathcal{P}_{\overline{2a_{1}+99}} \end{array}$$

The second line of the equation above is minimal when $a_1 = 1$.

3. Let *abc* and *efg* be three digit numbers. Then we can write the initial 6-digit number *x* as

x = 1000 *abc* + *efg*:

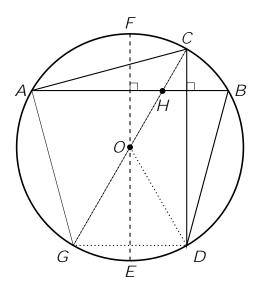
We also know that

$$6x = 1000$$
 efg + *abc*:

Combining the above two equations gives 5999 abc = 994 efg, which can be further simplified to 857 abc = 142 efg. Hence the number we are after is 142857.

4. To have all f7461 -20.96.7142881us1!1!e94326(are)-3 [1(r)atr1!1!vral2727(e)-380(all)-380(f7461 -20.96

5. Let EF be the diameter perpendicular to CD, and let G be the rejection of D in the line EF, as shown below.



Since *G* is the re ection of *D*, AG = BD. If we can show that *COG* is a diameter of the circle, then 4ACG is right angled (by Thales' theorem) and the desired result follows by Pythagoras' theorem. In order to show that *COG* is a diameter of the circle, we must show that $\setminus COG$ is straight.

Let *H* be the point of intersection of *OC* ad *AB*. Let $\OCD =$ and $\CHB =$. Since *CD*? *AB*, and are complementary. Furthermore, \CHB and \OHA are vertically opposite, so $\OHA =$ and thus $\HOF =$.

Now 4OCD is isosceles, thus $\ODC = \OCD = \$, and since FE is parallel to CD, $\EOD = \ODC = \$. As G is the rejection of D in the line EF, 4OEG, 4OED, and thus $\GOE = \DOE = \$. Thus \GOE and \HOF are equal and thus vertically opposite, and so \GOC is straight, as required.