

MATHEMATICS ENRICHMENT CLUB. Solution Sheet 10, July 30, 2013

1.

$$(x^{-1} + y^{-1})^{-1} = \frac{1}{\frac{1}{x} + \frac{1}{y}}$$
$$= \frac{1}{\frac{y+x}{xy}}$$
$$= \frac{xy}{y+x}$$
:

- 2. For a number to be a cube it's prime factorisation must contain only cubes. The prime factorisation of $60 = 2^2$ 3 5 son = 2 3^2 $5^2 = 450$.
- 3. Using long division we can see that 12 950 264 876 is divisible by 3 but that 4 650 088 292 = $\frac{12\,950\,264\,876}{3}$ is not. Thus the prime factorisation of 12 950 264 876 contains a 3 which is not squared, so cannot be a square.
- 4. There is a multiplier such that the angles of our triangle are 2, 3 and 4. Using the angle sum 2 + 3 + 4 = 180 = 20. So the angles are 40, 60 and 80.
- 5. Let the median from C to AB meet AB at D. Since DC has length $\frac{1}{2}$ AB

Now we divide $2^{0} + 1$ by 2^{10}

2. Using various angle expansions obtain

$$\begin{aligned} \cos((n+2) \) &= \cos((n+1) \) \cos & \sin((n+1) \) \sin \\ &= \cos((n+1) \) \cos & \sin((\sin(n)) \cos + \cos(n) \sin) \\ &= \cos((n+1) \) \cos & \sin(n) \sin \cos \cos(n) \sin^2(\) \\ &= \cos((n+1) \) \cos & \frac{1}{2} \sin(n) \sin(2) \ \cos(n) \sin^2 \ ; \end{aligned}$$

Now note

$$sin(n) sin(2) = cos(n) cos(2) cos(n + 2)$$

= $cos(n) (2 cos^2 1) cos((n + 2))$:

So