## MATHEMATICS ENRICHMENT CLUB. Problem Sheet 13, August 19, 2014<sup>1</sup>

- 1. Let  $N=1^9$   $2^8$   $3^7$   $4^6$   $5^5$   $6^4$   $7^3$   $8^2$   $9^1$ . How many perfect squares divide N?
- 2. Let 10 a;b;c 10. How many triplets, (a;b;c), satisfy

$$\frac{\frac{a}{b}}{c} = \frac{a}{\frac{b}{c}}$$

- 3. Find the sum of all primes p such that  $5^p + 4p^4$  is a perfect square.
- 4. Show that  $(1 + {}^{p}\overline{5})^{n} + (1 {}^{p}\overline{5})^{n}$  is an even integer for all positive integers n.

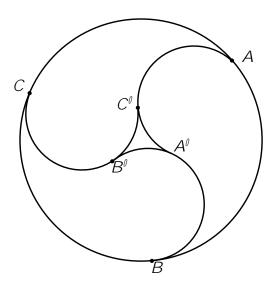



Figure 1: Figure for question 5

- 5. In the gure, ABC is a circle of radius R with 3 tear-drop shapes inside. Each of the arcs  $AC^{\ell}A^{\ell}$ ,  $BA^{\ell}B^{\ell}$  and  $CB^{\ell}C^{\ell}$  are of circles of the same radius, r. Find the ratio of R to r and the proportional area enclosed in the centre piece  $A^{\ell}B^{\ell}C^{\ell}$ .
- 6. Arrange 11 points in the plane so that 16 lines can be drawn, each passing through 3 points.

<sup>&</sup>lt;sup>1</sup>Some problems from UNSW's publication *Parabola* 

## **Senior Questions**

1. Show that, for x = 2(1:1)

$$\frac{1}{1+x} = 1 \quad x + x^2 \quad x^3 +$$

and hence show that

$$\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3}$$
:

2. Using the above, how many terms are needed to approximate In(2) correctly to 5 decimal places?