MATHEMATICS ENRICHMENT CLUB. Solution Sheet 9, June 23, 2015 1

1. Sincex and y are both integers, we can only get a solution when is an even number. If x & y & 0, then x = 2k for $k = 1; 2; \dots; 49$ and the corresponding values for are $y = \frac{1}{2}(100 2k)$; that is for each choice of & 0, there are two choices for. If x = 0 then y = 50. Similarly, if y = 0 then x = 100. Therefore the total number of di erent solutions is 4 49 + 2

- 4. I think there was a typo in part (a) that made it trivial once solution to (b) is founded, the question is suppose to $b\mathbf{g}^3$ 5[x] = 10.
 - (a) x^3 must be an integer $asx^3 = 10 + 5[x]$. Also $x^3 = 10 + 5x$ and $x^3 > 10 + 5fx = 10$ so 2 < x < 3. Hence x = 10 + 5 = 2 and therefore x = 10 + 5 = 2 and x = 10 + 5 = 2.
 - (b) y^3 5f yg = 10 so 10< y^3 < 15 and f yg = y 2. Hence y^3 = 10 + 5f y 2g = 5y, and since y^3 = 5 and $y = \frac{10}{5}$.
- 5. The answer is 8.
- 6. Let n be an even number such that 4. First we prove that 5° 625 (mod 1000); that is the remainder of 5°

To complete the question, we show that is divisible by 5. The possible remainder of an integer a divided by 5 are 0.1; 2; 3 and 4, therefore any perfect square number must have remainders 0.1^2 ; 0.2^2 ; 0.3^2 5 and 0.3^2 3(5); that is 0; 1; 4 are the only remainders of a perfect square number when divided by 5. If we consider the remainders of 0.1^2 21 and 0.1^2 3n + 1 when divided by 5, for 0.1^2 1; 2; 3; 4, we can see that the only time when both 0.1^2 1 and 0.1^2 1 have remainders either 0.1^2 1; 4 is when 0.1^2 1 and 0.1^2 1 and 0.1^2 1 are perfect squares is when 0.1^2 1; that is n is divisible by 5.