MATHEMATICS ENRICHMENT CLUB. Solution Sheet 13, August 15, 2016

1. Consider

$$f(x) = (1 + x)(1 + x^{2})(1 + x^{4})(1 + x^{8}) :::$$

$$= 1 + x + x^{2} + x^{3} + x^{4} ::: +$$

$$= \frac{1}{1 + x^{2}}$$

where last line is due to the sum of an in nite geometric sequence. Hence, setting $x = 1 = 2^2$ in f(x), we have

4. Since $2^x = 6^{-z}$, we have

$$2 = 6^{-\frac{Z}{x}}$$
 (1)

Similarly, since $3^y = 6^{-z}$, we have

$$3 = 6^{-\frac{Z}{y}}$$
: (2)

Therefore, combining (1) and (2), we have

$$6 = 2$$
 $3 = 6^{-\frac{z}{x}}$ $6^{-\frac{z}{y}} = 6^{-\frac{z}{x} - \frac{z}{y}}$:

In particular,

$$1 = \frac{z}{x} \frac{z}{y}$$

so that

$$\frac{1}{X} + \frac{1}{y} + \frac{1}{Z} = 0$$

5. The solution is 89. This can be obtain by using binomial expansion carefully.

Alternatively, note that

$$\frac{\frac{1+\sqrt{5}}{2}}{p} + \frac{1-\sqrt{5}}{2}$$

is the 11^{th} term of the Fibonacci number, see https://en.wikipedia.org/wiki/Fibonacci_number or Question sheet 6, 2016.

6. Let x the number of dollars and y the number of cents on the cheque. Note that three times the value of the cheque must be less than \$100:22, which implies x < 34. Now, we can write the value of the cheque as 100x + y cents, then the amount the bankers gave out was 3(100x + y) 22 cents. Therefore,

$$100y + x = 3(100x + y) 22$$
$$97y = 299x 22$$
$$97(y 3x) = 8x 22$$

Hence, using x < 34

$$97(y \quad 3x) = 8x \quad 22 \quad 250:$$
 (3)

The LHS equality of (3) implies y=3x must be even. The RHS inequality implies y=3x=2. From this, we conclude that

$$y 3x = 2$$

97 2 = 8x 22:

Solving the above system simultaneously yields x = 87 and y = 27.

Senior Questions

1. Let f(x) denote the number of consecutive primes between x and x + 2015. Clearly f(1) > 15. Moreover, for consecutive inputs x and x + 1, the function f can only vary by 0; 1 or 1; i.e f(x) di ers to f(x)