MATHEMATICS ENRICHMENT CLUB. Solution Sheet 5, May 30, 2016

- 1. By Pythagoras, $c^2 = a^2 + b^2$. Hence, $a^2 = c^2$ $b^2 = (c \ b)(c+b)$. So that for $a^2 = b + c$, we must have $b \ c = 1$. Therefore, $a^2 = b + c = 2b + 1$, which implies a is odd because b is an integer. Let k be an integer, then a must be in the form a = 2k + 1.
 - Hence a = 2k + 1, $b = (2k + 1)^2 = 4k^2 + 4k + 1$ and $c = 4k^2 + 4k + 2$, for k = 1,2,3,... are the solutions.
- 2. Let $x = d_0 d_1 d_2 ::: d_{n-1} d_n$. Then we can split x into the sum of two numbers, one consist of the odd digit the other the even digits; That is

$$X = 10^{n}$$
 $d_0 + 10^{n-1}$ $d_1 + 10^{n-2}$ $d_2 + \dots + 10$ $d_{n-1} + d_n$
= $(10^{n}$ $d_0 + 10^{n-2}$ $d_2 + \dots) + (10^{n-1}$ $d_1 + 10^{n-3}d_3 \dots)$:

Now, the remainder of 10^k divided by 11 is 1 when k is odd, and 1 when k is even. Recall the properties of remainders https://en. wi ki pedi a. org/wi ki /Modul ar_ari thmetic. The remainder of 10^n d_0 divide by 11 is either d_0 or d_0 depending on whether n is even or odd. Therefore, the remainder of $(10^n$ $d_0 + 10^n$ $d_0 + 10^n$ divided by 11 is either $d_0 + d_3 + \dots + d_n$ or $d_0 + d_0 + d_0 + d_0 + \dots + d_n$

4.

- 5. Apply the change of coordinates X = x=10 and Y = 10y. Then $X = 10\cos(10Y)$ and $Y = 10\cos 10X$. In particular, the graph of X and Y is symmetric. Let A be the sum of their X-coordinate, and B be the sum of their Y-coordinate. By the symmetry of graph of X and Y, one has $\frac{A}{B} = 1$. Moreover, by de nition one has A = a=10 and B = 10b. Hence, $\frac{a}{b} = \frac{10A}{B} = 100$.
- 6. Label the points $p_1, p_2, \ldots, p_{100}$. Draw the p_1, \ldots, p_{99} evenly spaced on a circle in order, and then place the p_{100} in the center of the circle. Suppose we are able to draw 50 line segments each intersect one another. Then by construction, no lines can pass over more than 2 points. Hence, we may assume without loss of generality, that the points are connect in pairs, and that p_1 is connected to p_{100} . Consider the point p_{50} , if it is connected to p_k for 1 < k < 50, then the line $p_k p_{50}$ can not possibly intersect $p_1 p_{100}$ because they belong to di erent halves of the circle (separated by the diameter pass through p_{50}). If p_{50} is connected to p_k for 50 < k < 100, then again the lines $p_k p_{50}$ and $p_1 p_{100}$ belows to di erent halves of the circle (separated by the diameter pass through p_{49}).
- 7. For $x^x + 1$ to be divisible by 2^n , $x^x + 1$ must be even, which implies x must be odd. Now by using polynomial division argument https://en.wikipedia.org/wiki/Polynomial_long_division, one can show that

$$X^{x} + 1 = (x + 1)(X^{x-1} X^{x-2} + X^{x-3} \dots + X^{2} X + 1)$$
:

Since the term $(x^{x-1} \quad x^{x-2} + x^{x-3} \quad \dots + x^2 \quad x + 1)$ is the sum of odd number of odd numbers, it is an odd number, and therefore can not be divided by 2^n . It follows that x + 1 must be divisible by 2^n ; that is x must be a multiple of $2^n = 1$, so that the least value of x for which $x^x + 1$ is divisible by 2^n is $2^n = 1$.

Senior Questions

- 1. Let the number we are attempting to $n ext{d} b ext{d} n$. If we add the digits of n, we get $1 + 2 + \dots + 8 + 9 = 45$. Recall that an integer n is divisible by 9 if and only if the sum of its digits is divisible by 9. Since 9 divides 45, the number n is always divisible by 9. Thus, our problem is reduce to $n ext{d} n$, such that n is divisible by 99 n 9 = 11. Note that we have a divisibility by 11 rule from n02, so to complete this problem, we just need to arrange the digits of n0, to n1 d the smallest possible combination, such that the sum of the odd digits n2 and the sum of the even digits n3 of n3 satis es n4 b = 0 mod 11.
- 2. Since a; b; c; d; e are consecutive positive integers, a = c 2; b = c 1; d = c + 1 and e = c + 2. So that $a + b + c + d + e = 5c = x^3$, for some integer x. Also, $b + c + d = 3c = y^2$, where y is some positive integer. Since $5c = x^3$, and c is an integer, x must be a multiple of 5. Hence $c = 25m^3$ for some integer m. Now, we know that c < 10;000, $m^3 < 400$, m 7. Since there is only 7 cases for m, we can easily test them to see which one also satis es $3c = y^2$. The only solution is m = 3; that is c = 675.

3. Let y = a + b, where $a = \sqrt[3]{x + b}$ and $b = \sqrt[3]{x}$ x + b. Therefore, we wish to a + b x + b Hence a + b x

$$y^{3} = (a + b)^{3}$$

$$= a^{3} + 3a^{b} + 3ab^{2} + b^{3}$$

$$= 2x \quad 3(a + b)$$

$$= 2x \quad 3y:$$

There, $x = \frac{1}{2}(y^3 + y)$ for all integers y.