MATHEMATICS ENRICHMENT CLUB. Solution Sheet 10, July 31, 2017

- 1. There are 49 ways, and even more methods of arriving at this answer. Perhaps the easiest is to use cases starting with using 0;1 or 2 possible 50 cent coins.
- 2. Divide the grid into nine 1

4. (a) $29 = 5^2 + 2^2$, $37 = 6^2 + 1^2$. For 30, note that none of the following are square numbers:

$$301 = 29$$
; $304 = 26$; $309 = 21$; $3016 = 14$; $3025 = 5$:

Similarly, 31 cannot be expressed as a sum of two squares.

- (b) Easy.
- (c) $1073 = (5^2 + 2^2)(6^2 + 1^2) = (302)^2 + (5 + 12)^2$. Swapping $5^2 + 2^2$ with $2^2 + 5^2$ yields $1073 = 7^2 + 32^2$.
- 5. Pigeon-hole principle. Each number can be written in the form $2^k(2m + 1)$ where k; m = 0. Since each number is less than 1001, m must be less than 500.

So since you're choosing 501 numbers, two of the numbers must have the same ${\bf m}$ value.

These two numbers can be written as $2^{k_1}(2m + 1)$ and $2^{k_2}(2m + 1)$.

Either k_1 k_2 or k_2 k_1 , so without loss of generality, assume k_1 k_2 . Then $2^{k_1}(2m+1)$ divides $2^{k_2}(2m+1)$, which concludes the proof.

Senior Questions

The number of ways to obtain ${\bf k}$ when rolling two dices coincides with the coe $\,$ cient of $\mathbf{x}^{\mathbf{k}}$ in

$$f(x) = (x + x^2 + x^3 + x^4 + x^5 + x^6)^2$$
:

Now, note that

$$f(x) = x^{12} + 2x^{11} + 3x^{10} + 4x^9 + 5x^8 + 6x^7 + 5x^6$$

