
MATHEMATICS ENRICHMENT CLUB. Problem Sheet 7, June 18, 2018

- 1. Let *P* be a point outside a circle with diameter *AB* and let *Q* be a point inside it. Prove that $\land APB$ is acute and that $\land AQB$ is obtuse.
- 2. (a) Explain why, if $a^2 + b^2$ has a xed value, *ab* is greatest when a = b.
 - (b) Suppose that $x^2 + y^2 = c^2$, nd the minimum value of $x^4 + y^4$.
- 3. Calculate the angles of a triangle which is divided by one of its angle bisectors into two isosceles triangles. Find all solutions¹.
- 4. Without using a calculator, explain why the quadratic equation

 $x^2 + 2343643x = 2382987 = 0$

has no integer solutions.

- 5. Each of the six vertices of a regular hexagon are connected to every other vertex using either a red or a blue line. Show that, however this is done, the resulting diagram will always contain either a red or a blue triangle. Show that this is not always the case if we use the vertices of a pentagon.
- 6. Let *ABC* be a triangle. An *altitude* of a triangle is a perpendicular from one vertex to the opposite side. Let *D* and *E* be the feet of the altitudes from *A* to *BC* and from *B* to *AC*, respectively. Let *G* be the point of intersection of *AD* and *BE*. Show that *CG*, when extended, is the altitude from *C* to *AB*. (The point *G* is called the *orthocentre* of the triangle *ABC*.) *Hint: Use cyclic quadrilaterals.*

¹Adapted from AP Kiselev Kiselev's Geometry: Planimetry, Tr. A Givental, 2006

Senior Questions

1. Recall the Lambert W function from last week, which was defined as the inverse of $f(x) = xe^x$. That is to say, if $y = xe^x$, then x = W(y). We can use W(x) to write the solution of certain equations in closed form. For example, suppose we wish to solve the equation $x = e^{-x}$. Then

$$x = e^{-x}$$

$$xe^{x} = 1$$

) $x = W(1)$ 0:5671 (according to MatLab)

- (a) Solve $x^2 = e^x$ in terms of W(x). Hence nd the approximate coordinates of point of intersection of the graphs of $y = x^2$ and $y = e^x$.
- (b) Solve $x^x =$