MATHEMATICS ENRICHMENT CLUB.

4. Since acute angled triangles exist, we know that there are convex polygons with at least three acute angles.

If the interior angle of a polygon is acute, then the exterior angle must be obtuse. The sum of the exterior angles of a convex polygon is 360 . As the sum of four numbers greater than 90 is greater than 360, a convex polygon must have less than four acute angles. Thus three is the largest number of acute angles that a convex polygon can have.

5.
$$
\frac{6}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{f}{x} \cdot \frac{f}{x^2 + 1} = \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac
$$

$$
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
$$

but

$$
a^{3} + b^{3} = x + \frac{p}{x^{2} + 1} + x \frac{p}{x^{2} + 1} = 2x
$$

\n
$$
ab = \frac{3}{x^{3}} \frac{(x + p)(x - p)}{(x^{2} + 1)(x - p)} = \frac{p}{x^{3}} \frac{x^{2}}{(x^{2} + 1)} = \frac{p}{x^{3} - 1} = 1:
$$

Consequently,

$$
y^3 = 2x \quad 3y
$$

\n
$$
x = \frac{y^3 + 3y}{2}; \quad y \leq z
$$

We can see that y^3 and 3y have the same parity, and so x is an integer.

- 6. (a) $(12) = 4$ and $(30) = 8$.
	- (b) We can think of (n) as being the number of positive integers less than n which are not a multiple of a factor of n (except the factor 1). So if p is prime, its only factors are 1 and p. Thus $(p) = p - 1$. For p^2 , the factors are 1, p and p^2 , so the multiples of the factors that aren't 1 are p ; $2p$; $3p$; \cdots ; p^2 , of which there are p. So $(p^2) = p^2$ $p = p(p-1)$. For p^3 , the factors are 1, p, p^2 and p^3 . Multiples of the factors that aren't 1 are $p/2p/3p$;:::: p^2 , $(p + 1)p$;:::: $2p^2$;:::: p^3 . That is, a total of p^2 factors. So $(p^3) = p^3$ $p^2 = p^2(p \ 1).$
	- (c) Using the same method as above, the factors of pq are 1, p q and pq . The multiples of the factors that aren't 1 are $p/2p$; :::: qp (q multiples) and $q/2q$; :::: pq (p multiples), but we don't want to count pq twice. So $(pq) = pq$ q $p + 1 =$ $(p \t1)(q \t1).$

Using the symmetry of the graph, we can estimate that the largest root is

$$
X_{max} = \frac{11}{2} + \frac{1}{2} \quad X_5 \qquad 17.763552537181550
$$

$$
f(X_{max}) = 3.55 \qquad 10^{-15}
$$

3. Let ABC be a triangle, and let D, E and H be the midpoints of BC, AC and AB, respectively. Suppose that O is the point of intersection of BE and AD . Let F and G be the midpoints of OA and OB, respectively. Then, applying the mid-line theorem to *4AOB*, F*GkAB*, and F*G* = $\frac{1}{2}$ AB. Similarly, by applying the mid-line theorem to $4ACB$, we can see that $ED = \frac{1}{2}AB$ and $EDKAB$. Thus $DEFG$ is a parallelogram, and O is the point of intersection of its two diagonals. Thus $OD = OF = AF$ and $OE = OG = GB$. Consequently, O is located $\frac{1}{3}$ the way along the medians AD and BE from their respective feet.

By a similar argument, we can show that the point of intersection of the medians CH and AD lies $\frac{1}{3}$ the length of AD away from D . Thus the two points of intersection coincide, and the three medians are concurrent.

