ARC linkage projects: revolutionising industries
With a relationship going back to 1994, UNSW Engineering and聽聽have enjoyed a productive, longstanding and highly satisfying partnership.
As leaders in the provision of innovative satellite navigation equipment to sectors including aerospace, mining and defence, GPSat Systems are ever cognisant of the importance of being able to accurately determine position 24/7. 鈥淥ur GPS and GNSS system solutions are helping revolutionise industries across Australia who are benefitting from improved efficiency, profitability and safety,鈥 says Graeme Hooper, GPSat Systems Engineering Manager and Director of R&D Technology.
Collaboration & innovation
GPSat Systems鈥 current collaboration with UNSW and the University of Adelaide builds on many years of previous research between the organisations and is being undertaken with the help of a significant Australian Research Council (ARC) Linkage grant. The project, in a nutshell, is about helping protect Australia鈥檚 critical infrastructure against GPS interference. In addition, the collaborators have been awarded a related Capability Technology Demonstration (CTD) project, part of the Department of Defence鈥檚 Innovation Hub.
According to聽Professor Andrew Dempster, Director of the聽,聽there are numerous mission-critical GNSS (global navigation satellite system) installations across the country - for precision aircraft approach, precise timing for digital services like the stock exchange, and industrial machine control among many others. These installations are vulnerable to radio frequency interference from unintentional 鈥榡amming鈥, as well as the more insidious practice of 鈥榮poofing鈥.
A 鈥榡ammer鈥 is a personal privacy device that can stop the GPS in your car or smartphone working. Spoofing, on the other hand, is the deliberate interference of a GPS signal by an imposter signal that causes the GPS receiver to report an inaccurate position.
鈥淵ou can imagine the safety and productivity implications if a GPS signal is interfered with in any way,鈥 says Dempster. 鈥淚f the jammer in your car not only stops your GPS working, but affects the ability of planes to land at a nearby airport, that is a pretty major problem.鈥
Global interest
The GNSS RF Inference FINder (GRFFIN) family of products stemming from both the original ARC research and further evolved through the CTD project is in the process of being introduced to both domestic and international markets. The unique technologies contained within GRIFFIN products and the performance capabilities achieved are certainly attracting considerable interest globally.
鈥淭he GRIFFIN system consists of several monitoring nodes installed in the area surrounding the GNSS infrastructure requiring protection. It can detect and geo-locate a broad variety of jammers and spoofers, some within an accuracy of just a few metres,鈥 Hooper explains.
Long-term partnerships
Hooper says his experience of working with Dempster and his team from ACSER has been excellent:
鈥淥ur work with UNSW has greatly helped us undertake the necessary technical work in detailed signal processing and mathematical modelling, and then applying it back to a real-world application. The skillset required to work in these highly technical areas of satellite navigation is very lightly occupied in Australia, so working with the universities has enabled us to produce world-class solutions without trying to recruit from a very limited Australian workforce.鈥
Partnership in summary
Partner
GPSat Systems Australia
Type of partnership
Ongoing
Funding
Over $1 million in ARC Linkage and LIEF grants, plus in-kind support
Collaborating since
1994
Purpose
Protect Australia鈥檚 critical satellite navigation infrastructure against GPS interference
Outcomes
GRIFFIN 1000 鈥 a commercialised product that can detect and geo-locate a variety of sources of GPS interference.
Contact us聽
Want more information? Drop us a line聽email, call (+61 2 9385 5000), or submit an enquiry form.聽