Farm dams can be converted into renewable energy storage systems: study
New research suggests Australia鈥檚 agricultural water reservoirs could be an innovative energy storage solution for variable renewables.
New research suggests Australia鈥檚 agricultural water reservoirs could be an innovative energy storage solution for variable renewables.
Tens of thousands of small-scale hydro energy storage sites could be built from Australia鈥檚 farm dams, supporting the uptake of reliable, low-carbon power systems in rural communities, new UNSW-Sydney-led research suggests.
The study, published today in聽,聽finds agricultural reservoirs, like those used for solar-power irrigation, could be connected to form micro-pumped hydro energy storage systems 鈥 household-size versions of the Snowy Hydro hydroelectric dam project. It鈥檚 the first study in the world to assess the potential of these small-scale systems as an innovative renewable energy storage solution.
With the increasing shift towards variable energy sources like wind and solar photovoltaics, storing surplus energy is essential for ensuring a stable and reliable power supply. In other words, when the sun isn鈥檛 up or the wind isn鈥檛 blowing, stored energy can help balance energy supply and demand in real time and overcome the risk of shortages and overloads.聽
In a micro-pumped hydro energy storage system, excess solar energy from high-production periods is stored by pumping water to a high-lying reservoir, which is released back to a low-lying reservoir when more power is needed, flowing through a turbine-connected generator to create electricity. However, constructing new water reservoirs for micro-pumped hydro energy storage can be expensive.聽
鈥淭he transition to low-carbon power systems like wind and solar photovoltaics needs cost-effective energy storage solutions at all scales,鈥 says Dr Nicholas Gilmore, lead author of the study and lecturer at the School of Mechanical and Manufacturing Engineering at UNSW Engineering. 鈥淲e thought 鈥 if you鈥檙e geographically fortunate to have two significant water volumes separated with sufficient elevation, you might have the potential to have your own hydro energy storage system.鈥
For the study, the team, which also included researchers from Deakin University and the University of Technology Sydney, used satellite imagery to create unique agricultural reservoir pairings across Australia from a 2021 dataset of farm dams. They then used graph theory algorithms 鈥 a branch of mathematics that models how nodes can be organised and interconnected 鈥 to filter commercially promising sites based on minimum capacity and slope.聽
鈥淚f you have a lot of dams in close proximity, it鈥檚 not viable to link them up in every combination,鈥 says Dr Thomas Britz, co-author of the study and senior lecturer at UNSW Science鈥檚 School of Mathematics and Statistics. So, we use these graph theory algorithms to connect the best dam configurations with a reasonable energy capacity.鈥
From nearly 1.7 million farm dams, the researchers identified over 30,000 sites across Australia as promising for micro-pumped hydro energy storage. The average site could provide up to 2 kW of power and 30 kWh of usable energy 鈥 enough to for 40 hours.
鈥淲e identified tens of thousands of these potential sites where micro-pumped hydro energy storage systems could be installed without undertaking costly reservoir construction,鈥 Dr Gilmore says. 鈥淭hat鈥檚 thousands of households that could potentially increase their solar usage, saving money on their energy bills, and reducing their carbon footprint.鈥
The research team also benchmarked a micro-pumped hydro site to a commercially available lithium-ion battery in solar-powered irrigation systems. Despite a low discharge efficiency, they found the pumped hydro storage was 30 per cent cheaper for a large single cycle load due to its high storage capacity.
鈥淲hile the initial outlay for a micro-pumped hydro energy storage system is higher than a battery, the advantages are larger storage capacity and potential durability for decades,鈥 Dr Gilmore says. 鈥淏ut that cost is significantly reduced anyway by capitalising on existing reservoirs, which also has the added benefit of less environmental impact.鈥
Building micro-pumped hydro energy power systems from existing farm dams could also assist rural areas susceptible to power outages that need a secure and reliable backup power source. Battery backup power is generally limited to less than half a day, while generators, though powerful, are dependent on affordable fuel supply and produce harmful emissions.
Read more:聽
鈥淧eople on the fringes of the electricity network can be more exposed to power outages, and the supply can be less reliable,鈥 Dr Gilmore says. 鈥淚f there鈥檚 a power outage during a bushfire, for example, a pumped hydro system will give you enough energy to last a day, whereas a battery typically lasts around eight hours.鈥
Although encouraging, the researchers say some limitations of the study require further analysis, including fluctuations in water availability, pump scheduling and discharge efficiency.
鈥淥ur findings are encouraging for further development of this emerging technology, and there is plenty of scope for future technological improvements that will make these systems increasingly cheaper over time,鈥 Dr Gilmore says.聽
鈥淭he next step would be setting up a pilot site, testing the performance of a system in action and modelling it in detail to get real-world validation 鈥 we have 30,000 potential candidates!鈥