91成人版抖音

Technicians in blue suits mounting photovoltaic solar panels on roof of modern house. Solar modules as ecological renewable energy sources. Alternative production modules power sustainable resources Technicians in blue suits mounting photovoltaic solar panels on roof of modern house. Solar modules as ecological renewable energy sources. Alternative production modules power sustainable resources

New environmentally friendly solar panel recycling process helps recover valuable silver

Play icon
Neil Martin
Neil Martin,

Patented sieving process developed by research team at UNSW Sydney significantly improves the way important materials from photovoltaic panels can be separated and extracted for reuse.

UNSW Sydney engineers have developed a new, more effective way of recycling solar panels, which can recover聽silver at high efficiency.

The process, which has been patented, has been specially created for photovoltaic panels in order to quickly and efficiently sort the component materials, as a key step of highly efficient PV recycling.

Recycling solar panels thoroughly has proven difficult up to now since the individual parts, such as glass, silicon, metals, wiring and plastic, are integrated in such a聽way that makes them hard to separate.

To be reused, solar panel components need to be carefully separated to avoid contamination with other materials. Manufacturers will only reuse materials that have a high purity 鈥 which has proven very hard to achieve.

That means the vast majority of solar panels could end up in landfill, rather than being recycled to the benefit of the environment.

But now a team from the聽聽lab led by聽Professor Yansong Shen聽has announced a new process which offers an effective separation of 99 per cent of PV cell particles.

鈥淧V panels usually last for around 20 or 25 years, so given the growth in domestic solar power since the 1990s we can see there is a very pressing and urgent problem to deal with those first generation of panels that are coming to their end-of-life,鈥 Prof.聽Shen says.

鈥淲e want to reuse and recycle those panels, but at the moment there is very limited research and very limited technology to allow us to do so effectively and prevent them from just ending up in landfill.

鈥淧utting solar panels into landfill is a big issue because there are a number of harmful metals in the panels that can pollute the soil and pollute the water. So for environmental reasons we also need to find a better way to recycle the panels.

"At the same time, the end-of-life is a source of many valuable metals like silver if they can be properly recycled.鈥

According to estimates from the聽International Renewable Energy Agency, the cumulative PV waste volume on a global scale will reach up to eight million tonnes by 2030. And that figure soars to potentially up to 78 million tonnes of waste by 2050 as successive generations of solar panels installed at the start of the century come to their end-of-life.

The聽ProMO research team at UNSW calculate that between 5-50 million kilograms of silver could potentially be recycled from the cumulative聽waste by 2050 using their process, given that the equivalent of around 0.64kg of silver per tonne of PV waste has been recovered in tests.

Sieving aids

Prof. Shen鈥檚 team have been working for nearly three years on developing their new processes, funded by federal ARENA and NSW EPA grants, which integrate聽conventional methods with a very highly abrasive separation system using the addition of sieving aids.

The first existing step to recycle PV panels involves the removal of large components such as the aluminium frame and glass sheets to just leave the solar cell.

鈥淭he next step is the crushing the panel and separation of material inside the solar cell and that is currently one of key bottlenecks for the whole system,鈥 says Prof. Shen.

鈥淚f we do not have a simple method for high-abrasion separation, then we can鈥檛 effectively move on to the third step which is recovering the various material that has been separated and being able to reuse it.

鈥淭he key to our new process is the addition of the sieving aids which help to crush the solar cells into smaller particles allowing a better separation of all the components. That makes it much easier to recover important elements such as the silver contained in the solar cells.鈥

The entire crushing and sieving process, which occurs inside a vibrating container, takes only around 5-15 minutes to effectively separate 99 per cent of the PV materials.

The team discovered that using stainless steels balls as a sieving add provided the most optimal solution for the process.

鈥淲e spent around three or four months working on that element, also testing with sieving aids made of clay or plastic,鈥 says team member and MPhil candidate Chengsun He.

鈥淲e can use different size sieving aids for different stages of the process. The main goal is to ensure that all of the PV cells particles can be crushed by the sieving aids, while the glass and other significant material remains intact at the top.鈥

Industry collaboration

Once the material has been separated using the new patented process, the team can employ a traditional chemical leaching, as well as precipitation to extract the specific elements such as pure silica and silver.

In tests, using their process, the researchers were able to extract 99 per cent of silver from a solar cell for potential reuse.

鈥淥ur group of 30 researchers is the largest in Australia working on PV recycling technology development, not lifecycle assessment (LCA) only, and probably one of the largest in the world. This patent is just one part of one recycling process for end-of-life solar panels and we are also working on other solutions to the other steps,鈥 says Prof.聽Shen.

鈥淲e are working with some industry partners already, but we would like to engage in more industry collaborations to scale this process up and enhance the economic feasibility of the PV recycling process.

鈥淚 think people are just starting to realise how important it is that we can recycle these PV cells in an environmentally friendly way.鈥

Media enquiries

For more information, or to speak with the research team, please contact Neil Martin, News & Content Coordinator.

Tel: 0290653025
Email: n.martin@unsw.edu.au


1050122072 Photo: Shutterstock